LCA - Least Common Ancestor

Let T be a rooted tree with n vertices. For two vertices u and v, you must find their closest common ancestor (the Least Common Ancestor). The procedure for finding such an ancestor will be denoted by LCA(u, v).

For example, if u is the ancestor of v, then LCA(u, v) = u.

[image: image1.emf]1

23

456

87

LCA(4, 8) = 2

LCA(7, 6) = 1

LCA(7, 8) = 5

LCA. Binary lifting method
Let’s find for each vertex its 1st, 2nd, 4th, 8th, ... ancestor. Store the results into the array up, where up[i][j] is equal to the 2j - th ancestor of the vertex i (1 ≤ i ≤ n, 0 ≤ j ≤
[image: image2.wmf]é

ù

n

2

log

). If the 2j -th ancestor of the vertex i does not exist, then set up[i][j] equal to the root of the tree.
For each vertex v of the tree, compute the input d[v] and the output f[v] timestamps. They will be needed to determine in O(1) whether one vertex is an ancestor of another.

The preprocessing described is performed in O(nlog2n).
Example. Consider the tree with n = 9 vertices. Let l =
[image: image3.wmf]é

ù

9

log

2

 = 4. Then each up[i] is an array of 5 elements (from up[i][0] to up[i][4]).

[image: image4.emf]1

243

576

89

up[1] = up[2] = up[3] = up[4] = (1, 1, 1, 1, 1, 1),

up[5] = up[6] = up[7] = (2, 1, 1, 1, 1, 1),

up[8] = up[9] = (7, 2, 1, 1, 1, 1).

The query is to find the smallest common ancestor of vertices a and b. First, let’s check if a is not an ancestor of b. Also, check if b is an ancestor of a. Otherwise, we’ll lift the ancestors of the vertex a until we find the highest (closest to the root) vertex that is not yet an ancestor of b (not necessarily direct). That is, it will be a vertex x such that x is not an ancestor of b, but up[x][0] is already an ancestor of b. The query is executed in O(log2n) time.

[image: image5.emf]1

23

457

98

6

LCA(8, 7) = 1

x

up[x][0]

2 is notan ancestor of 7

1 is an ancestor of 7

E-OLYMP 2317. LCA offline (Easy) Find element in the tree.
► Store the tree in the adjacency list g. Declare timestamps arrays d and f when traversing the tree with dfs. Declare an auxiliary array of ancestors up.
vector<vector<int> > g;

vector<int> d, f;

vector<vector<int> > up;

vector<pair<int, int> > Query;

char op[20];

Start the depth first search from the vertex v. The ancestor of v is the vertex p. Let the root of the tree be the vertex with number 1.
void dfs(int v, int p = 1)

{

 int i, to;

 d[v] = time++;
The immediate ancestor of v is p.
 up[v][0] = p;
To find the 2i-th ancestor of the vertex v, first find the 2i-1-th ancestor of the vertex v, that equals to x = up[v][i – 1]. Then find the 2i-1 -th ancestor of the vertex x, that equals to
up[v][i] = up[x][i – 1] = up[up[v][i – 1]][i – 1]

[image: image6.wmf]v

x

x

=

up

[

v

][

i

-

1

]

2

i

-

1

2

i

-

1

=

up

[

x

][

i

-

1

] =

up

[

v

][

i

]

2

i

 for (i = 1; i <= l; i++)

 up[v][i] = up[up[v][i - 1]][i - 1];

Continue dfs. Iterate over the vertices to, that can be reached from v.
 for (i = 0; i < g[v].size(); i++)

 {

 to = g[v][i];
If to is not an ancestor of v, then continue the search from the vertex to.
 if (to != p) dfs(to, v);

 }

 f[v] = time++;

}

The function Parent returns 1 if a is the ancestor of b.
int Parent(int a, int b)

{

 return (d[a] <= d[b]) && (f[a] >= f[b]);

}

Function LCA returns the least common ancestor of the vertices a and b.

int LCA(int a, int b)

{

 if (Parent(a, b)) return a;

 if (Parent(b, a)) return b;

 for (int i = l; i >= 0; i--)

 if (!Parent(up[a][i], b)) a = up[a][i];

 return up[a][0];

}

The main part of the program. Read the input data.
scanf("%d", &n);

g.resize(n + 1);

for (i = 0; i < n; i++)

{

 scanf("%s %d %d\n", op, &a, &b);
For the case of ADD query, add an edge to the tree. When a GET query is made, save its parameters in the Query array.
 if (op[0] == 'A') { g[a].push_back(b); g[b].push_back(a); }

 else Query.push_back(make_pair(a, b));

}

d.resize(n + 1); f.resize(n + 1); up.resize(n + 1);

Compute l =
[image: image7.wmf]é

ù

n

2

log

. Initialize an array up.
l = 1;

while ((1 << l) <= n + 1) l++;

for (i = 0; i <= n; i++) up[i].resize(l + 1);

Run the depth first search from the vertex 1.
dfs(1);

Compute and print the answers for the queries of type GET.
for (i = 0; i < Query.size(); i++)

 printf("%d\n", LCA(Query[i].first, Query[i].second));

_1575891007.unknown

_1679997073.vsd
1

2

3

4

5

7

9

8

LCA(8, 7) = 1

6

x

up[x][0]

2 is not an ancestor of 7

1 is an ancestor of 7

_1680010714.vsd
v

x

x

= up[v][i-1]

2i-1

2i-1

= up[x][i-1] = up[v][i]

2i

_1680000994.unknown

_1679995929.vsd
1

2

3

4

5

6

8

7

LCA(4, 8) = 2

LCA(7, 6) = 1

LCA(7, 8) = 5

_1445625979.unknown

_1445625855.vsd
5

7

3

6

8

1

2

4

9

